A.I. Danilenko (joint work with V.V. Ryzhikov)

Title: *Self-similarities of ergodic flows*

Abstract: Given an ergodic flow $T = (T_t)_{t \in \mathbb{R}}$, let $I(T)$ be the set of reals $s \neq 0$ for which the flows $(T_{st})_{t \in \mathbb{R}}$ and T are isomorphic. Then $I(T)$ is a Borel multiplicative subgroup of \mathbb{R}^*. It carries a natural Polish group topology which is stronger than the topology induced from \mathbb{R}. There exists a mixing flow T such that $I(T)$ is an uncountable meager subset of \mathbb{R}^*. For a generic flow T, the transformations T_{t_1} and T_{t_2} are spectrally disjoint whenever $|t_1| \neq |t_2|$. A generic transformation (i) embeds into a flow T with $I(T) = \{1\}$ and (ii) does not embed into a flow with $I(T) \neq \{1\}$.

For each countable multiplicative subgroup $S \subset \mathbb{R}^*$, there is a Poisson suspension flow T with simple spectrum such that $I(T) = S$. If S is without rational relations then there is a rank-one weakly mixing rigid flow T with $I(T) = S$.